Colorization of Logo Sketch Based on Conditional Generative Adversarial Networks

نویسندگان

چکیده

Logo design is a complex process for designers and color plays very important role in logo design. The automatic colorization of sketch great value full challenges. In this paper, we propose new method based on Conditional Generative Adversarial Networks, which can output multiple colorful logos only by providing one sketch. We improve the traditional U-Net structure, adding channel attention spatial skip-connection. addition, generator consists parallel attention-based blocks, images. During model optimization process, style loss function proposed to diversity logos. evaluate our self-built edges2logos dataset public edges2shoes dataset. Experimental results show that generate more realistic images simple sketches. Compared classic networks, generated network are also superior visual effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Image Colorization with Generative Adversarial Networks

Over the last decade, the process of automatic colorization had been studied thoroughly due to its vast application such as colorization of grayscale images and restoration of aged and/or degraded images. This problem is highly ill-posed due to the extremely large degrees of freedom during the assignment of color information. Many of the recent developments in automatic colorization involved im...

متن کامل

Unsupervised Diverse Colorization via Generative Adversarial Networks

Colorization of grayscale images is a hot topic in computer vision. Previous research mainly focuses on producing a color image to recover the original one in a supervised learning fashion. However, since many colors share the same gray value, an input grayscale image could be diversely colorized while maintaining its reality. In this paper, we design a novel solution for unsupervised diverse c...

متن کامل

Context-conditional Generative Adversarial Networks

We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...

متن کامل

Bidirectional Conditional Generative Adversarial Networks

Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples (x) conditioned on both latent variables (z) and known auxiliary information (c). We propose the Bidirectional cGAN (BiCoGAN), which effectively disentangles z and c in the generation process and provides an encoder that learns inverse mappings from x to both z and c, trained jointly with the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2021

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics10040497